3.4 Equations and Graphs of Polynomial Functions

Warm Up:

1) When the polynomial \(mx^3 - 3x^2 + nx + 2 \) is divided by \((x+3)\), the remainder is -1. When it is divided by \((x-2)\) the remainder is -4. What are the values of \(m \) and \(n \)?

2) Factor fully. \(x^4 + x^3 - 10x^2 - 4x + 24 \) then answer these questions.

- Leading Coefficient
- \(y \)-intercept
- End behavior
- \(x \)-intercepts

Ex 1: Graph and analyse the function \(f(x) = (x+3)(x+4)(x+1) \)

- Leading Coefficient \((x)(x)(x) = x^3\)
- \(y \)-intercept
- End behavior
- \(x \)-intercepts: \(x = -3, -4, -1 \)

To graph:
- Plot the \(x \)-intercepts, (Zeros)
- Plot the \(y \)-intercept
- Trace out the orientation.

Try this:

\[y = (x-3)(x+4)(3-x)(x-2) = 0 \]

- \(x = 3, -4, 3, 2 \)
- \((-3)(4)(3)(-2) = 120 \)
- QIII to QIV
Example 2: \(f(x) = (x+2)^2(x-4) \)

Multiplicity of 2.
There is going to be a bounce in the graph.

\(x-inter = -16 \)

Example 3: \(y = (3x+4)^2(x-4)^3 \)

Leading term: \(9x^5 \)

\(y-inter = -1024 \)

\(x-inter: -4/3, -4/3, 4, 4, 4 \).

Bounce \(\uparrow \) slide \(\uparrow \)

Page 147-149
1-5 first, last, 7-10 first, last