7.1 Exponential Functions

\[y = C^x \]

C is a constant, \(C > 0 \). \(x \) is the variable.

Example 1 \[y = 2^x \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>-2</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

Domain: \(x \in \mathbb{R} \)
Range: \(y > 0 \)
Asymptote: \(y = 0 \)
Increasing
\(y \)-intercept \(1 \)

For \(y = C^x \), \(C > 1 \)
Always increasing
\(y \)-int = \(1 \)
You sketch \(y = 4^x \)

Ex 2 \[y = \left(\frac{1}{3} \right)^x \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{9})</td>
</tr>
<tr>
<td>-2</td>
<td>9</td>
</tr>
</tbody>
</table>

Domain: \(x \in \mathbb{R} \)
Range: \(y > 0 \)
\(y \)-intercept \(1 \)
Decreasing

\(y = C^x \), \(0 < C < 1 \)
Decreasing
\(y \)-int = \(1 \)

Read Page 338. Do the your turn on pg 339.

\[y = 5^x \]

Growth and Decay Formula

Radium 225 has a half-life of 15 days.

\[C = \frac{1}{2} \Rightarrow A = A_0 \left(\frac{1}{2} \right)^{t/h} \]

\(A \) = amount left
\(A_0 \) = initial amount
\(C \) = growth or decay factor.

In this case: \(A = A_0 \left(\frac{1}{2} \right)^{t/15} \)
\[A = A_0 \left(3^{t/T}\right) \]

Write the formula to calculate the amount of bacteria if it triples every week, where \(T\) is time in days.

Assignment pg 342 1-4 6,7 8a,c e9a,c,d